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ABSTRACT [ ' "

In structural redesign, two structural states are involved; the baseline (known) State S 1 with
unacceptable performance, and the objective (unknown) State $2 with given performance
specifications. The difference between the two states in performance and design variables may be
as high as 100% or more depending on the scale of the structure. A Perturbation Approach to
Redesign (PAR) is presented to relate any two structural states S 1 and $2 that are modeled by the
same finite element model and represented by different values of the design variables. General
perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes,
static deflections, static stresses, Euler buckling loads and buckling modes of the objective State
$2 in terms of its performance specifications, and State S1 data and FEA results. LargE
Admissible P_.erturbation (LEAP) algorithms are implemented in code RESTRUCT to define the
objective State $2 incrementally without trial and error by postprocessing FEA results of State S1
with no additional FEAs. Systematic numerical applications in redesign of a 10-element 48-d.o.f.
beam, a 104-element 192-d.o.f. offshore tower, a 64-element, 216-d.o.f. plate, and a 144 element

896-d.o.f. cylindrical shell show the accuracy, efficiency, and potential of PAR to find an
objective state that may differ 100% or more from the baseline design.

I. INTRODUCTION

Several problems in analysis, design, and modification of a structure or a structural design
can be stated as redesign problems. Those are two-state problems involving the baseline State S 1
and the objective State $2. S1 is known and has beer, modeled and analyzed by FEM. In the
event that the performance of State S 1 is unacceptable, the objective State $2 must be defined to
satisfy performance specifications. The Perturbation Approach to Redesign (PAR) developed in
this work can relate any two structural states that can be modeled and analyzed by the same FE
model. PAR has the potential to perform redesign in the sense of resizing, reshaping, and
reconfiguration to satisfy any performance requirements that can be predicted by FEA including
modal dynamics, static deflections and stresses, and global buckling. LEAP algorithms
implemented in code RESTRUCT (REdesign of STRUCTures) [3] presently can handle resizing
for natural frequencies, mode shapes and static deflections.

Figure 1 shows several two-state problems that appear in the analysis-design-redesign
process following a basic FE analysis. In analysis, the following two-state problems are
encountered: (P1) Model correlation [28], (P2) Derivation of global failure equations [1, 14], (P3)

Failure point identification [14], (P4) Redundancy [14], (P5) Reliability, [4], (P6) Non-
Destructive-Testing [24]. In design, the following two-state problems are encountered: (P7)
Redesign for target performance [1, 2, 11, 12, 24, 26, 27], (P8) Redesign for target redundancy,
(P9) Redesign for target reliability.

LEAP theory was developed during the past seven years from the linear perturbation
techniques introduced by Stetson in 1975 [26, 27] and modified by Sandstrom et al [24]. They
redesigned a structure for both natural frequency and mode shape objectives but allowed only
small differences between the baseline and objective states. In that respect, linear perturbation
methods are equivalent to design sensitivity methods. Nonlinear perturbation methods [11, 12] !

] allow for large differences between the two states. The objective state is found by postprocessing j
t..
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F data of the baseline structure only, using an incremental prediction correction scheme [1]._
Presently, research efforts are directed towards two goals. The first one is to redesign larger scale"
smactures as far away from the baseline structure as possible before a second FEA is needed.
Large admissible perturbations [1] updating only cognate modes [2] in an incremental process are
used towards that end. Substructuring is also investigated for that purpose, as well as for
reshaping and reconfiguration. The second goal is to implement more and different objectives and
derive the corresponding general perturbation equations. LEAP algorithms are under development
for static stress, global buckling load, and buckling mode objectives.

The problem of redesign by large admissible perturbations is analyzed in Chapter II. Several
two-state problems mentioned above are stated as redesign problems in Section II.1. The
Perturbation Approach to Redesign (PAR) is presented in Section II.2 and LEAP theory for
development of solution algorithms is summarized in Section II.3. Many numerical applications
using four different structures are presented in Chapter III to assess the present status of code
RESTRUCT, and the potential and limitations of PAR.

II. REDESIGN BY LARGE ADMISSIBLE PERTURBATIONS

A simple modeling-analysis-design-redesign process for structures using FEM is shown in
Figure 1. Rectangular blocks indicate two-state problems which can be formulated as redesign
problems using PAR and solved efficiently by a LEAP algorithm. Shaded blocks indicate
problems already solved in some form by code RESTRUCT. Some of those problems are
discussed below.

II.1. Redesign and Other Two-State Problems

The classical structural redesign problem appears in Figure 1 after analyzing either the original
or the correlated FE model. Undesirable response - such as a natural frequency in the range of
wave excitation, a dynamic mode with high amplitudes near the free surface where wave and
current loads are maximum, or high stresses and deflections - makes redesign mandatory. The
performance specifications of the objective design are desirable values of those response
particulars.

After placing a structure in service, tests are performed to measure its performance and
compare it to FEM predictions. In the modeling process, simplifying assumptions, uncertainty,
and ignorance result in discrepancies between measurements and predictions particularly for
marine structures which have large manufacturing tolerances. The process of finding a FE model
of a physical structure that will correctly predict measured structural response is called model
correlation. The initial FE model is the known State S 1. The objective State $2 represents the
unknown correlated FE model. The Perturbation Approach to Redesign presented in the following
section preserves element connectivity and changes geometric properties so that the correlated
model represents a real structure [2]. That is, PAR does not change simply numbers in the mass
and stiffness matrices. PAR can also solve the problem of model correlation for geometry
dependent hydrodynamic load [28].

The problem of failure point identification can also be formulated by PAR and solved by a
LEAP algorithm. S1 represents the initial structural state and $2 the unknown failure point
(design point in reliability terminology) on a limit surface [10, 20]. The advantage of PAR is that
it can provide an implicit expression for a global failure criterion by relating State $2 to S 1.

Related is the problem of reserve and residual redundancy. In the literature, several different

aspects of redundancy are presented as definitions depending on the type of structure and analysis
performed [5, 6, 21]. PAR remedies this lack of invariant and consistent redundancy definition by
introducing a redundancy injective mapping [ 14] defining the difference between the initial intact
or damaged structure and the design point.

Finally, a new methodology for reliability analysis and design of large scale structures is
under development based on PAR [4]. The Perturbation Approach to Reliability provides an
alternative to the systems approach [5, 21, 29] and the stochastic FEM [19, 30] which are the two
most popular methods in structural reliability. PAR makes possible the introduction of advanced

L structural analysis in the reliability computations without simplifying the structure. PAR alsol.d
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Fallows randomness in geometry, material, and load. There is no limitation to the number of ]

random variables used and the random load need not be applied incrementally until structural

failure, The reliability analysis problem is a two-state problem where S I is the initial structure and
$2 the design point.

PAR can also address the very difficult problems of target redundancy and target reliability

design. S I is the initial structural design of inadequate redundancy or reliability and $2 is the
objective structure of specified redundancy or reliability [4]. These are difficult design problems
because redundancy and reliability are not computed by FEM. PAR can solve these problems
because of the introduction of an injecfive mapping relating S 1 to $2.

II.2. Perturbation Approach to Redesign (PAR)

The PAR methodology has been developed to solve the above two-state problems. It has five

major steps: Ste_!gp_A.:A Structure (S1) is modeled and analyzed by a general purpose FE code;
MSC/NASTRAN is used in our work. So far, four types of analysis have been considered in

PAR and the governing equations are listed below. For modal dynamics the free vibration
equations for S 1 are

(tk]-o,2tm]){% ={0} for j=l,2 ..... n , (1)

where then eigenvalues o_j,j=l,2 ..... n satisfy equation det([k]-o37[m])=0 In equation

(1), damping may be included only in Rayleigh's form and added mass is included in [m]. For
the static deflections and stresses of S 1 we have

[k] {u} = {f} (2)

and {_} = [S] [k] -1 {f} , (3) [S] = [G] [D] [N] , (4)

where [G], [D], [N] are the stress-strain, strain-displacement, and shape function matrices. The

governing equation for global buckling in t-mite elements is

([ko]+[kt_]){Vb}= {0} , (5)

where [k o] and [k_] are the small displacement and initial geometric stiffness matrices.
_p.._: The following perturbation relations are introduced relating State $2 to S 1:

[k']=[k]+[Ak] , (6) [m']=[m]+[Am] , (7)

['--_,2...,,] = ['--a)2..] + ['---A(0_2)...] , (8) [_)'] = [0] + [A4)] , (9)

where unprimed and primed symbols refer to the baseline (S1) and the objective State S2,

respectively, and prefix A indicates difference between counterpart quantities of states S 1 and $2.

[@] =[{V}I, {V}2 ..... {_g}n]' is the matrix of eigenvectors of S1 and _co2-..] is the diagonal

matrix of the corresponding eigenvalues. Perturbation relations pertaining to equations (2) and (3)
are

{u'} = {u} + {Au} , (10) {f'}-- {f} + {Af} , (11)

{(_'} = {t_} + {Ate} , (12) [S'] = [S] + [AS] (13)

L

For the global buckling eigenvalue problem we have

[ko] = [ko]+[Ako] , (14) [k_] : [ka] + [Ak(_] (15)
J
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F [Per ]=[ Per ]+[ APcr ] , (16) [*gl=[ob]+[AOu] (17)

Further, in Step 2, desirable values of some response particulars of $2 such as natural
frequencies, static deflections and mode shapes are specified. An incomplete set of mode shapes
may be used and only some degrees of freedom may be defined in each mode.
Ste_N_p_3:The differences in structural properties between S1 and $2 are expressed in terms of the

fractional changes Ote,e=l,2 ..... p of p properties of elements or groups of elements as:

P P P P

Z[ke] o , (18) [Anal= Z[Ame]= Z[me]0te , (19)
e=l e=l e=l e=l

p p

[AS]: Z[ASe] = Z[Se]Ote . (20)
e=l e=l

Several aeS may refer to the same element but different properties such as bending, torsion, and
stretching. The unknowns in the process of defining $2 from its specifications and S 1 are the

fractional changes ote . When the CteS are defined it is ensured that element connectivity in the

FE model is preserved and $2 represents a real structure.
Stegp._4: The differences in structural response between states S1 and $2 are expressed implicitly in

terms of the OreS by the general perturbation equations. For modal dynamics we have

L

P T
Z ({V'}i [ke ]{W'}i - °)_2 {w'}T[me]{_l/'}i) 0re = 0)_2 {_'}T[m]{_l/'}i - {_l/'}T[k]{_l/'}i
e=l

P T
Z{V'}j [kel{_l/'}i°te =-{v'}T[k]{v'}i ,
e=l

P T
t m iZ{V}j[ el{V}iRe =-{v'}T[ml{v'}i ,

, (21)

(22)

(23)

• e-1 .....
for 1 --'i,2 ..... n, j = 1+1, 1+2 ..... n [1, 2] . Equanon (21) represents the n diagonal terms of

)1
the energy balance equation ['K_]-['M .J/Ca _.1 = 0 for $2, that is, the Rayleigh quotients for

m{2 . Equations (22) and (23) represent-tthe ""orthogonality conditions of modes {V'}i with

respect to [k'] and [m']. Theoretically, orthogonality of modes with respect to one of [k'] or

[m'] implies orthogonality with respect to the other. Numerically, however, both conditions must

be forced if {_'}i, j=l,2 ..... n, are to represent modes of a real structure.
The general tSerturbation equations for static deflections are derived from the counterpart of

equation (2) for structure $2 based on the modal dynamic expansion of {u'} in terms of the

' " 1unknown modes {_1/}j,J = ,2 ..... n Thus, inversion of matrix [k'] is avoided. Linearizing

only the explicit dependence on the aeS, we have [1, 15]

ui = Z/0i-m-Am - ¢imAmcme °re '
m=l_, Bm B2m where (24)

n

Am = _'_(*'jrn fj), Bm = {_'}Ttk]{_t'}m , Cme = {v'}TEke]{V'} •

j=l

The general perturbation equations for static stresses are derived in a similar manner [ 14]

P ¢imAm N_| \"{Ao}=-{o}+ [s]+  [se]o o z_,|/.a 42 "--m, 0re
e=l )Lm=l Bm e=lkm=l "-'m

(25)

J



91

Third International Conferenceon Inverse Design ConceptsandOptimization in Engineering Sciences
(ICIDES-III). Editor: G.S. Dulik:ravich. Washington D.C.. October 23-25,199l.

FFor global buckling, the general perturbation equations are derived using the same method as in 1
the case of the modal dynamics eigenvalue problem [14]

{gig }iT ([k% ]- Pi{k_0, ]){gi{_ }iOte = {_g }T (Pi{k_0 ]-[ kc ]){gib }i ' (26)
e=l

=-{gtb} j [kc]{gtb} i , (27)
e=l

t Y •

¢=l

for i = 1,2 ..... n, j=i + 1,i + 2 ..... n, where [kc] = [ko] - [k_F ] , kgF includes the body force,

and [lq_] =- Pi[kgo] - [kcF] .
_g.5.: In this f'mal step, the problem of finding State $2 based on its specifications and results of

FEA for S1 is formulated and solved for the p unknown tZeS using the LEAP algorithm
presented in the next section. The problem formulation is as follows:

Minimize 11_l12e 9l p , (29)

subject to n o natural frequency objectives (.0_2 , i = 1,2 ..... n o ; n o normal mode objectives

_ki , numberof (k, i) = n o ; n u static deflection objectives u[ , i=1,2 ..... n u ; n c static stress

objectives 6[ , i=1,2 ..... n_ ; nb global buckling eigenvalues Pi' , i=1,2 ..... n b ; neb buckling

mode objectives ¢_{_a ' number of (k,i) = neb ; 2p lower and upper bounds on the redesign

+

variables ote , -1 < c% < ct e _ a e , e=l,2 ..... p ; n a admissibility constraints extracted from

no

equations (22) and (23), where na=ZZ(nr-i)=nc0[(Znr-1)-n_] ; and nab
i=l

admissibility constraints extracted from equations (27) and (28), where

11 b

nab = 2 ,_, (n r - i) = nb[(2n r - 1)- nb]. All of the above redesign objectives are substituted in
i=l

the appropriate general perturbation equations (21)-(28). The remaining unused general
perturbation equations may be used to predict the unspecified performance particulars of the
objective State $2. Accuracy of those predictions, however, it not as high as those of the redesign
objectives. All the constraints of the above problem may result in an empty, non-empty, or
countable feasible domain. In the first case, the redesign objectives cannot be achieved for the
selected set of redesign variables, in which case a minimum error solution in satisfaction of the
redesign objectives is achieved by a generalized inverse algorithm [1, 2, 11, 15]. In the second
case, an optimum solution is achieved using an optimality criterion (29).

II.3. LargE Admissible Perllarbation (LEAP) Algorithm

The redesign problem formulated by PAR in Section II.2 can be solved by a LEAP algorithm.
Many LEAP algorithms have been developed to solve a variety of two-state problems [1, 2, 14,
15, 28] and have been documented in detail. Suffice to present here the basic steps and difficulties
of the solution algorithm. The LEAP algorithm developed to solve the redesign problem is

t oudined in Figure 2. It starts from the baseline structure (S1) and reaches incrementally the I.J
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objective $2 by prediction and correction. In the prediction phase of the algorithm, the small nperturbation method [24, 26, 27] is used. The modal dynamics general perturbation equations are I

linearized. For that purpose, increments are limited to 7% differences between $2 specifications
and the corresponding S 1 properties. Predictions are small but inadmissible because admissibility
conditions (22) and (23) are linearized. In the correction phase, perturbations are corrected by
satisfying the nonlinear general perturbation equations and are forced back into the admissible
space by satisfying the nonlinear admissibility conditions. The total CPU time for redesign may
be reduced by a factor occasionally as high as 4 when in the first increment the space of cognate
modes is identified and thereafter all computations are performed in that space. Such is the case

for torsional redesign [2] of the offshore tower in Figure 5. Torsional modes (3, 18, 19)
constitute one cognate subspace with very weak interaction with other modal subspaces such as
those for bending and stretching.
In each increment, in both phases the resulting problem may be underdetermined or

overdetermined depending on the relation between the number p of redesign variables c_e , the

number of equality constraints ($2 specifications) n = no) + n_ + n u + na + n b + nCb + n a + nab,

and the 2p bounds on the _eS. When the problem is overdetermined, a minimum error solution
in satisfaction of the $2 specifications is produced by a generalized inverse algorithm. When the
problem is undetermined, it is solved by optimization using the minimum change criterion in
equation (29). To achieve this global objective, at each increment the following objective is
minimized

p [ t-1 q2
min EJ(x+tae)X-i(X+qae) - 1[ (30/

e=IL q=l j
The problem is solved by quadratic programming [8] or sequential quadratic programming [7]

depending on whether the expression for [,Sk] is linear as in equation (18), or nonlinear as in the
case of plate and shell redesign. In those cases, the plate or shell thickness is selected as redesign

variable resulting in a cubic expression for [Ak] in terms of the OreS. [AS] is always a nonlinear

expression of the OreS because [S el depends on the distance of the point where the stress is
computed from the neutral axis. The LEAP algorithm is implemented in code RESTRUCT
(REdesign of STRUCTures) [3]. It is 27,000 FORTRAN 77 commands and may serve as a
posrprocessor to any special or general purpose FE code. We presently use it to postprocess
MSC/NASTRAN.V64 data on the secondary (UB) main frame computer (IBM-3090) of the
University of Michigan.

The LEAP algorithm outlined above finds the optimum objective structure $2 without trial and
error and with no additional FEAs. The [k] matrix inversion required in static deflection and stress
redesign is avoided by using modal expansions as shown in equations (24) and (25). Thus, an
accurate modal basis is mandatory even as $2 moves far away from S 1. LEAP algorithms can
surmount the following three difficulties as well. All general perturbation equations (which
become equality constraints in the optimization problem) are strongly nonlinear implicit
expressions of the redesign variables o:e . The static force vector {f'} may depend on the

structure's geometry (e.g. hydrodynamic loads) and consequently change in the redesign process.
Finally, the set of specifications provided for $2 are usually incomplete and only some d.o.f.s of
specified modes are def'med.

III. NUMERICAL APPLICATIONS

L

A total of 42 numerical applications are presented in this section on optimal redesign of four
different structures [22, 9, 31]. Results are summarized in Tables 1, 4, 5, 6 and show the
accuracy of code RESTRUCT for applications with number of redesign variables ranging from 8
to 21; natural frequency and mode shape redesign objectives changing by a factor ranging from
0.3 tO 2.0; degrees of freedom ranging from 48 to 896. For each redesign objective, Tables 1, 4,
5, 6 show the objective value, the value actually achieved as computed by reanalysis with
MSC/NASTRAN and the corresponding relative error. CPU time and numbers of extracted
modes n r , admissibility conditions n a , and redesign variables are also shown. The values of the
redesign variables of the optimum solution are not shown. The optimal solution appears in thej
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V form of optimal Eucledian norm of the Ores in Tables 5 and 6; and in the form of the Hasover- 1
Lind reliability index [10] in Tables 1 and 4. l
10-element 48-d.o,f, beam: The clamped-hinged beam in Figure 4 is subjected to a uniform load

in the y direction and a concentrated load applied at node 7 in the z direction, co1 = 183.092
rad/sec, the horizontal and vertical deflections at node 7 are v 7 = 12.151 mm and w 7 = 17.733

mm as computed by MSC/NASTRAN. Redesign variables and structural _oups are shown in
Table 2. The accuracy of the redesign process is shown in Table 1 for one, two or three
simultaneous redesign objectives. The problem of reliability analysis is studied assuming
randomness in geometric properties, A (area), Iy, Iz (moments of inertia), and material properties

E (Young's modulus) and p (density). The fractional changes _e are assumed to be

independent normal random variables of zero mean. Standard deviations are selected as _aE I =

0.40 for bending rigidities EIy and EI z , and cyctpa = 0.30 for mass per unit length pA. In

order to compute the probability of failure to first (FORM) or second (SORM) order [20],
computation of individual and joint design points and the corresponding Hasover-Lind reliability

index [3 is required as shown in Figure 3. Computation of [3 is achieved by transforming the

ores to independent standard normal random variables through the Rosenblatt transformation [13].
These numerical applications as well as those following on the offshore tower show that large
admissible perturbation methods can introduce sophisticated structural analysis in reliability
without simplifying the structural model and without repeated FEAs [4].
104-element 192-d.o.f. offshore tower: The offshore tower shown in Figure 5 is 69.95 m high

and operates in 45.72 m water depth. The tower at the base is square with a 38.10m side and
tapers linearly to 22.86 m at the deck. The FE model of the tower is composed of 104 circular
tubular beam elements and has 192 dols. Loading on the tower is due to: (i) 240 tonnes deck load

which is applied to the structure as uniformly distributed load at the deck nodal points. (ii) Wave
hydrodynamic forces calculated for a design wave of 182.88 m length and 6.10 m height using
Morison's equation. The wave propagates in the x-direction. (iii) Wind generated water current in
the x-direction with linear velocity profile of 1.03 m/sec at the mean free surface waterline and zero

at the sea bed. co1 = o_2 = 4.695 rad/sec for the In'st bending modes in the XZ and the YZ

planes, co3 = 5.353 rad/sec for the first torsional mode with respect to axis Z . Redesign
variables and structural groups are shown in Table 3.

Failure states are defined by deterioration factors in the first and third eigenvalues of 1.54 and
2.00. Geometric and material properties are random. The fractional changes e%s, shown in

Table 3, are assumed to be independent normal random variables with zero mean. Standard

deviations are selected as (YOtEI = 0.40 for bending rigidity EI and Cap A = 0.30 for mass per

unit length pA. Design points are again computed by postprocessing FE analysis results for the

baseline design only. It should be noted that both in Tables 1 and 4 the computed [3 are very high
because the external load is deterministic and limit states were pushed as far away from the

baseline design as possible in order to demonstrate the accuracy and limitations of code
RESTRUCT.
64-element 216-d.o.f. plate: The clamped-free-flee-flee plate in Figure 6 is subjected to a uniform
load p and has the dimensions and properties shown in the figure. Its response is computed by
MSC/NASTRAN and redesign is performed by RESTRUCT. The incremental optimization

problem is nonlinear and solved by sequential quadratic programming [7] because [Ak] is a cubic
expression of the o_es which represent fractional changes of the plate thickness [17, 22]. The

plate is subdivided into 8 structural groups each containing 8 finite elements. Results of redesign
are summarized in Table 5 and show very high accuracy even for changes by a factor of 2 in

eigenvalues and maximum deflection.
144-element 896-d.o.f. cylindrical shell: The simply supported shell shown in Figure 7 is

subjected to hydrostatic pressure load p due to 286 meters submergence in salt water [23].
Dimensions [25] and properties are also shown in the figure. Its modal dynamic and static
deflection response is computed by MSC/NASTRAN [16, 18]. The optimization problem in each
increment is nonlinear and solved by sequential quadratic programming [7]. The cylindrical shell

L is subdivided into 5 structural groups and even though symmetry is not forced by linking



94

ThirdInternationalConferenceonInverseDesignConceptsandOptimizationinEngineeringSciences
('ICIDES-IIIL Editor: G.S. Dulikmvich. Washington D.C.. October 23-25. 1991.

.[- symmetric groups (1 and 5, 2 and 4) as was done in the plate redesign problem, symmetry was-_
preserved in the redesign process. Results of code RESTRUCT are summarized in Table 6 and
show good accuracy even for changes by a factor of 2 in eigenvalues and deflection.

In all of the above applications, the LEAP algorithm in RESTRUCT can be pushed further by
taking additional incremental steps if higher errors are considered acceptable. For higher accuracy,
however, one more FE analysis may be used after about 10 increments.

CONCLUDING REMARKS

Several two-state problems in structural analysis, design, and redesign can be formulated by
PAR (Perturbation Approach to Redesign) and solved by a LEAP (LargE Admissible Perturbation)
algorithm. The objective structural design is found incrementally without trial and error or
repeated FEAs for differences in response from the baseline design of the order of 100% or more.
In structural reliability, PAR provides an attractive alternative to Stochastic Finite Elements and the
Systems approach.

Computer code RESTRUCT which implements the large admissible perturbation
methodology, is being developed since 1983, has been tested thoroughly and has generated
confidence in its potential to solve two-state problems. Several theoretical and numerical
developments are under way. New types of finite elements are being introduced; new structures
are being redesigned, such as stiffened plates and shells; new two-state problems are studied, e.g.
submarine acoustic noise reduction, redesign for buckling objectives, redesign for stress
objectives; a perturbation approach to reliability analysis and design is being developed; larger
scale structures are being redesigned by postprocessing FEA results by MSC/NASTRAN.V66
which has superelement capability. For that purpose, a supercomputer version of RESTRUCT
running on the San Diego supercomputer has been developed.
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Figure 6. 64-element, 216-d.o.f. plate

Table1. Redesignand reliability ofch_mped-hinged beam

I 0+4588

2

3

4 0.4588

5 0.4588

6

7 0.4588

II 0.3

12 '--

13

14 0.3

15 0.3

16

17 0.3

| /Wl

R_,-_,i, Error(%)

0,4578 .0,205

0.4570 .0.401

0.4554 -0.736

0.4545 .0.931

0.2892 -3.586

0.2959 -I,379.

0.2841 -5,271

0.2940 -2.002

F.S. ° Re_n_ly_is Error(%)

2.0358 2.0440 0.405

2.0358 2.1124 3.762

2.0358 2.1125 3.769

2,0358 2.1893 7,542

3.0 3.0122 0.407

3.0 3.1554 5.179

3.0 3.2042 6.801

3.0 33282 10,942

r.s.. E.o,<m)l " I cPu+++I] I'
.... 7.65 31050 9 8 14

-- -- -- 11.40 52620 I0 12 14

2.0358 2.0458 0.489 7.39 48378 8 8 14

-- -- -- 20.83 75520 9 12 21

2.03_8 2.0.568 1.0.33 7.36 68486 11 10 14

2.0358 2.0701 1.684 15,09 90435 9 9 14

2.03k58 2.0737 1.863 18.03 105928 I0 12 21

-- -- -- 13.02 81131 11 10 14

-- -- -- 19.52 80156 I0 12 14

3.0 3.2152 7.173 11.31 108912 11 12 14

-- -- -- 39.65 116314 9 12 21

3.0 3.0997 3.325 15.63 99915 II I0 14

3.0 3.2969 9.898 25.40 101394 7 5 14

3.0 3.1003 3.342 33.59 187822 I0 12 21

_4,7,13,15, imdlT_z_eolvedbyth¢Sener_lJzed'mveme_lsorlthra. *F.S. = F_dlure Sl,sle J

ORIGINAL Pf, CE IS
OF POOR QIJALITY
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Table 2. 10-element 48-d.o.f. clamped-hinged beam :
structural groups and redesign variables

Table 3. 104-element, 192-d.o.f. offshore tower : structural

groups, redesigzl variables, and dimensions

Struct.r_ Elements Structur.I [ Redes,V,
Group # Redesign Variables, a, ; p = 21 Group # Variables a,

1 o_ (az:/)
1 ol (oEt,) , 02 (c, E1.) , oa (o_,).. 1. '_. a_ [oral
2 a4 (oEt k) , as (aEl,) o_ (ooA1 3.4 2 a3(aE:)

3 o: faery} • as (oE L) . o9 (o_a} _, a_ (a_at

4 01o (OEIM) , Oll (OEI,) , o12 o_4 ) 6 3 as (aEI)

5 Oll3 (C_Ellt) , 014 (OEI,) , OI5 (OpA) 7 o_ {opa I

6 al0(aE/,), ol,-(am,), al_(oea) 8 4 o:(ae_)
as (%,a)

7 O19 (OEl_t) , 020 (OF, l,) , 021 (QeA) 9, 10 5 o9 (oCt)

alo (oea)
O o_ (azt)

o_2 (%,a)

D_ [ D, [ ?';umber
Description (m: . _m, ,qement_

Legs belo_ first il 7(,:' i f: 7:_7 [ 8

bracing l iLegs between first 61¢, 0 5"4 8
and second bracm_ I

Legs abo_e secotid

braong
ttorlzontat

bracing
Horizontal cross

brazin_
Vertical crcss

bracin$

0 (,]'_ 'JS_;j hi

0483 U4(,4 32

0 508 0489 16

0.610 0.591 24

Redesign and reliability of offshore tower

Reanalysis Error(%) F.S." Reanalysis Error(_) (msec)

1 0.6598 0.6531 -1.018

2 -- -- --

3 0.6598 0.6547 -0.786

-- -- -- 4.43 973814 18 8

0.6598 0.6530 -1.030 3.8 925711 19 8

0.6598 0.6541 -0.871 9.37 985832 18 8

-- -- -- 8.03 1589439 18 8

0.5000 0.4844 -3.112 21.47 1529708 19 8

0.5000 0.4877 -2.462 13.7 1617425 18 8

*F.S. = F_lure State

11 0.5000 0.4871 -2.572

12 -- -- --

13 0.5000 0.4895 -2.100

p = 12; cases 12 _.nd 13 axe solved by the generalized inverse algorithm.

q
I

Table 5. Redesign of 64-element 216-d.o.f. plate

# GoM Rean_ysis Error(%)

1 1.2867 1.2844 -0.177

2 2.0000 1.9818 -0.909

3 -- -- --

4 -- -- --

5 1.2867 1.2842 -0.195

6 2.0000 1.9801 -0.997

7 1.2867 1.2848 -0.144

8 2.0000 1.9848 -0.760

9 1.2867 1.2840 -0.204

10 2.0000 1.9747 -1.264

11 1.3195 1.3157 -0.287

12 2.0000 1.9721 -1.395

13 1.2867 1.2844 -0.173

14 2.0000 1.9806 -0.971

15 1.3195 1.3093 -0.774

16 2.0000 1.9104 -4.479

_2 2

W2 /W2

Goal Reanalysis Error(% t

m E B

__ __ m

m m __

__ m p

1.1589 1.1572 -0.140

1.5000 1,4875 -0.831

1.2867 1.2788 -0.621

2.0000 1.9198 -4.011

1.3195 1.3103 -0,697

2.0000 1.9341 -3.397

1.1589 1.1574 -0.125

1.5000 1.4941 -0.395

1.1761 1.1691 -0.591

1.5000 1.4408 -3.950

Goal Rean alysis Error(%) (see)

-- -- -- 0.0267 263

-- -- -- 0.2354 713

0.7579 0.7633 0.718 0.0358 420

0.5000 0.5069 1.374 0.2794 1044

0.7772 0.7818 0.594 0.0295 440

0.5000 0.5064 1.289 0.2816 1199

-- -- -- 0.0275 381

-- -- -- 0.2407 1037

0.7772 0.7821 0.631 0.0549 562

0.5000 0.5077 1.531 0.4378 1532

0.6598 0.6649 0.787 0.1561 833

0.3536 0.3600 1.831 1.2394 2072

0.7772 0.7817 0.577 0.0297 562

0.5000 0.5063 1.259 0.2817 1528

0.6598 0.6678 1.224 0.1618 832

0.3536 0.3710 4.945 1.3025 2065

In all cMes, n, = 7, no = 5,p = 8.

Table 6. Redesign of Simply Supported Cylindrical Shell

I#el Goa ReandysisError{%)
l 1.3310 1.3200 -0.900

2 1.5700 1.5300 -2.700

3 1.9171 1.7800 -7.000

4 1.9171 1.7800 -7.000

5 1.331 1.3200 -0.900

6 1.9171 1.7800 -7.000

L

t2 2

_d 2 /tO 2

Goal Reaaalysis Error(%)

-- -- B

-- -- m

-- -- m

1.6700 1.5000 -9.000

Goal

B

0.6480

0.648

Reanalysis

B

0.6610

0.646

-- 0.5867 549

-- 1.3300 715

-- 2.4800 1077

-- 2.486 2031

2.000 0.5790 940

0.00 2.486 2131

1_1 _ C_k_e_, _r = 5, II a = 5


